708 research outputs found

    High and Low Dimensions in The Black Hole Negative Mode

    Full text link
    The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory-Laflamme black string instability. We analyze the eigenvalue as a function of space-time dimension by constructing two perturbative expansions: one for large d and the other for small d-3, and determining as many coefficients as we are able to compute analytically. Joining the two expansions we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d=4.Comment: 17 pages, 4 figures. v2: added reference. v3: published versio

    On Black-Brane Instability In an Arbitrary Dimension

    Full text link
    The black-hole black-string system is known to exhibit critical dimensions and therefore it is interesting to vary the spacetime dimension DD, treating it as a parameter of the system. We derive the large DD asymptotics of the critical, i.e. marginally stable, string following an earlier numerical analysis. For a background with an arbitrary compactification manifold we give an expression for the critical mass of a corresponding black brane. This expression is completely explicit for Tn{\bf T}^n, the nn dimensional torus of an arbitrary shape. An indication is given that by employing a higher dimensional torus, rather than a single compact dimension, the total critical dimension above which the nature of the black-brane black-hole phase transition changes from sudden to smooth could be as low as D11D\leq 11.Comment: 1+14 pages, 2 eps figures. Replaced with the published versio

    Classical Effective Field Theory for Weak Ultra Relativistic Scattering

    Full text link
    Inspired by the problem of Planckian scattering we describe a classical effective field theory for weak ultra relativistic scattering in which field propagation is instantaneous and transverse and the particles' equations of motion localize to the instant of passing. An analogy with the non-relativistic (post-Newtonian) approximation is stressed. The small parameter is identified and power counting rules are established. The theory is applied to reproduce the leading scattering angle for either a scalar interaction field or electro-magnetic or gravitational; to compute some subleading corrections, including the interaction duration; and to allow for non-zero masses. For the gravitational case we present an appropriate decomposition of the gravitational field onto the transverse plane together with its whole non-linear action. On the way we touch upon the relation with the eikonal approximation, some evidence for censorship of quantum gravity, and an algebraic ring structure on 2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec 4 and detailed in App C. Version accepted for publication in JHE

    From Black Strings to Black Holes

    Get PDF
    Using recently developed numerical methods, we examine neutral compactified non-uniform black strings which connect to the Gregory-Laflamme critical point. By studying the geometry of the horizon we give evidence that this branch of solutions may connect to the black hole solutions, as conjectured by Kol. We find the geometry of the topology changing solution is likely to be nakedly singular at the point where the horizon radius is zero. We show that these solutions can all be expressed in the coordinate system discussed by Harmark and Obers.Comment: 6 pages, 5 figures, RevTe

    Post-ISCO Ringdown Amplitudes in Extreme Mass Ratio Inspiral

    Full text link
    An extreme mass ratio inspiral consists of two parts: adiabatic inspiral and plunge. The plunge trajectory from the innermost stable circular orbit (ISCO) is special (somewhat independent of initial conditions). We write an expression for its solution in closed-form and for the emitted waveform. In particular we extract an expression for the associated black-hole ringdown amplitudes, and evaluate them numerically.Comment: 21 pages, 5 figures. v4: added section with numerical evaluation of the ringdown amplitude

    Static Axisymmetric Vacuum Solutions and Non-Uniform Black Strings

    Get PDF
    We describe new numerical methods to solve the static axisymmetric vacuum Einstein equations in more than four dimensions. As an illustration, we study the compactified non-uniform black string phase connected to the uniform strings at the Gregory-Laflamme critical point. We compute solutions with a ratio of maximum to minimum horizon radius up to nine. For a fixed compactification radius, the mass of these solutions is larger than the mass of the classically unstable uniform strings. Thus they cannot be the end state of the instability.Comment: 48 pages, 13 colour figures; v2: references correcte

    Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    Get PDF
    We show that under variation of moduli fields ϕ\phi the first law of black hole thermodynamics becomes dM=κdA8π+ΩdJ+ψdq+χdpΣdϕdM = {\kappa dA\over 8\pi} + \Omega dJ + \psi dq + \chi dp - \Sigma d\phi, where Σ\Sigma are the scalar charges. We also show that the ADM mass is extremized at fixed AA, JJ, (p,q)(p,q) when the moduli fields take the fixed value ϕfix(p,q)\phi_{\rm fix}(p,q) which depend only on electric and magnetic charges. It follows that the least mass of any black hole with fixed conserved electric and magnetic charges is given by the mass of the double-extreme black hole with these charges. Our work allows us to interpret the previously established result that for all extreme black holes the moduli fields at the horizon take a value ϕ=ϕfix(p,q)\phi= \phi_{\rm fix}(p,q) depending only on the electric and magnetic conserved charges: ϕfix(p,q) \phi_{\rm fix}(p,q) is such that the scalar charges Σ(ϕfix,(p,q))=0\Sigma ( \phi_{\rm fix}, (p,q))=0.Comment: 3 pages, no figures, more detailed versio

    Network synchronization of groups

    Full text link
    In this paper we study synchronized motions in complex networks in which there are distinct groups of nodes where the dynamical systems on each node within a group are the same but are different for nodes in different groups. Both continuous time and discrete time systems are considered. We initially focus on the case where two groups are present and the network has bipartite topology (i.e., links exist between nodes in different groups but not between nodes in the same group). We also show that group synchronous motions are compatible with more general network topologies, where there are also connections within the groups

    On non-uniform smeared black branes

    Full text link
    We investigate charged dilatonic black pp-branes smeared on a transverse circle. The system can be reduced to neutral vacuum black branes, and we perform static perturbations for the reduced system to construct non-uniform solutions. At each order a single master equation is derived, and the Gregory-Laflamme critical wavelength is determined. Based on the non-uniform solutions, we discuss thermodynamic properties of this system and argue that in a microcanonical ensemble the non-uniform smeared branes are entropically disfavored even near the extremality, if the spacetime dimension is D13+pD \le 13 +p, which is the critical dimension for the vacuum case. However, the critical dimension is not universal. In a canonical ensemble the vacuum non-uniform black branes are thermodynamically favorable at D>12+pD > 12+p, whereas the non-uniform smeared branes are favorable at D>14+pD > 14+p near the extremality.Comment: 24 pages, 2 figures; v2: typos corrected, submitted to Class.Quant.Gra

    Non-Relativistic Gravitation: From Newton to Einstein and Back

    Full text link
    We present an improvement to the Classical Effective Theory approach to the non-relativistic or Post-Newtonian approximation of General Relativity. The "potential metric field" is decomposed through a temporal Kaluza-Klein ansatz into three NRG-fields: a scalar identified with the Newtonian potential, a 3-vector corresponding to the gravito-magnetic vector potential and a 3-tensor. The derivation of the Einstein-Infeld-Hoffmann Lagrangian simplifies such that each term corresponds to a single Feynman diagram providing a clear physical interpretation. Spin interactions are dominated by the exchange of the gravito-magnetic field. Leading correction diagrams corresponding to the 3PN correction to the spin-spin interaction and the 2.5PN correction to the spin-orbit interaction are presented.Comment: 10 pages, 3 figures. v2: published version. v3: Added a computation of Einstein-Infeld-Hoffmann in higher dimensions within our improved ClEFT which partially confirms and partially corrects a previous computation. See notes added at end of introductio
    corecore